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Microsaccades are high-velocity fixational eye
movements, with special roles in perception and
cognition. The default microsaccade detection method
is to determine when the smoothed eye velocity
exceeds a threshold. We have developed a new
method, Bayesian microsaccade detection (BMD),
which performs inference based on a simple
statistical model of eye positions. In this model, a
hidden state variable changes between drift and
microsaccade states at random times. The eye
position is a biased random walk with different
velocity distributions for each state. BMD generates
samples from the posterior probability distribution
over the eye state time series given the eye position
time series. Applied to simulated data, BMD recovers
the ‘‘true’’ microsaccades with fewer errors than
alternative algorithms, especially at high noise.
Applied to EyeLink eye tracker data, BMD detects
almost all the microsaccades detected by the default
method, but also apparent microsaccades embedded
in high noise—although these can also be interpreted
as false positives. Next we apply the algorithms to
data collected with a Dual Purkinje Image eye tracker,
whose higher precision justifies defining the inferred
microsaccades as ground truth. When we add
artificial measurement noise, the inferences of all
algorithms degrade; however, at noise levels
comparable to EyeLink data, BMD recovers the ‘‘true’’
microsaccades with 54% fewer errors than the default
algorithm. Though unsuitable for online detection,
BMD has other advantages: It returns probabilities
rather than binary judgments, and it can be
straightforwardly adapted as the generative model is
refined. We make our algorithm available as a
software package.

Introduction

Even when people attempt to fixate, their eyes are
always in motion. Fixational eye movements are often
categorized as drift, tremor, and microsaccades (Ciuf-
freda & Tannen, 1995). During most of the fixation
time, the eye is in a drift state, which is low-amplitude,
low-velocity motion, sometimes modeled as a random
walk (Cornsweet, 1956; Ditchburn & Ginsborg, 1953;
Ratliff & Riggs, 1950). A few times a second, the eye
makes a microsaccade, which is a high-velocity
movement along a relatively straight trajectory (Corn-
sweet, 1956; Engbert & Kliegl, 2003; Engbert, Mer-
genthaler, Sinn, & Pikovsky, 2011; Rolfs, 2009).

Microsaccades have been implicated in several
perceptual and cognitive functions, including aiding
performance in high-acuity visual tasks (Ko, Poletti, &
Rucci, 2010; Poletti, Listorti, & Rucci, 2013; Rucci,
Iovin, Poletti, & Santini, 2007) and shifts of covert
spatial attention in both humans and monkeys
(Engbert & Kliegl, 2003; Hafed & Clark, 2002; Hafed,
Lovejoy, & Krauzlis, 2011; Lara & Wallis, 2012;
Laubrock, Engbert, & Kliegl, 2005; Laubrock, Eng-
bert, Rolfs, & Kliegl, 2007; Rolfs, 2009; Rolfs, Engbert,
& Kliegl, 2004; Yuval-Greenberg, Merriam, & Heeger,
2014), though there has been some disagreement
regarding this last role (Collewijn & Kowler, 2008;
Horowitz, Fine, Fencsik, Yurgenson, & Wolfe, 2007).
Arguments about the functional roles of microsaccades
rely on accurate definition and detection of micro-
saccades (Poletti & Rucci, 2016). Microsaccade detec-
tion is complicated by motor noise in the eye and
measurement noise in the eye tracker. The latter is
particularly important in view of the widespread use of
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video-based infrared eye trackers, which are less
invasive than magnetic scleral search coils, but noisier
(Hermens, 2015; Träisk, Bolzani, & Ygge, 2005). For
example, the popular EyeLink II video-based infrared
eye tracker reports a precision of 0.01 deg of visual
angle; however, in practice this precision can be worse
(Holmqvist et al., 2011). The low sensitivity, precision,
and resolution of video-based eye trackers can cause
difficulties in resolving microsaccades (Nyström, Han-
sen, Andersson, & Hooge, 2016; Poletti & Rucci, 2016).

How can microsaccades be reliably detected in the
presence of other fixational eye movements and
measurement noise? The most commonly used micro-
saccade detection method, especially in human studies,
is a velocity-threshold algorithm proposed by Engbert
and Kliegl (Engbert, 2006; Engbert & Kliegl, 2003).
This method, which we refer to as EK, detects a
microsaccade when the magnitude of the eye velocity
exceeds a given threshold for a sufficiently long
duration. Because a fixed threshold would ignore
differences in noise across trials and individuals, the
threshold was adaptively chosen to be a multiple of the
standard deviation of the velocity distribution (Engbert
& Kliegl, 2003). However, the value of the multiplier is
arbitrary and affects the algorithm’s performance, as
expected from signal detection theory: If the multiplier
is too high, the algorithm misses microsaccades, while
too low a multiplier causes false alarms. For example,
EK with the threshold multiplier set to its standard
value of 6 (Engbert & Kliegl, 2003) labels the eye

position data in Figure 1A as a microsaccade, but not
the data in Figure 1B. However, lowering the threshold
multiplier to three causes EK to label both examples as
microsaccades. This ambiguity in the identification of
microsaccades can cause ambiguity in conclusions
about their functional roles.

More recent algorithms have tried to eliminate the
need for an arbitrary velocity threshold by taking into
account more details of the statistics of fixational eye
movements. Bettenbuehl et al. (2010) assumed that
microsaccades are discontinuities embedded in drift
and used wavelet analysis to detect them. Otero-Millan,
Castro, Macknik, and Martinez-Conde (2014) have
proposed an unsupervised clustering algorithm based
on three features: peak velocity, initial acceleration
peak, and final acceleration peak.

Here we propose to detect microsaccades with a
Bayesian algorithm. Bayesian algorithms have been
used previously for saccade detection. Salvucci and
colleagues (Salvucci & Anderson, 1998; Salvucci &
Goldberg, 2000) used a hidden Markov model to
separate fixations from saccades. However, their
algorithm requires the user to specify a set of fixation
targets, which are regions of interest based on a
cognitive process model of the task. By contrast, our
algorithm is entirely task independent. More recently,
Daye and Optican (2014) used particle filters to
estimate the posterior over a hidden position variable in
a generic and simple model for eye velocity. Whenever
this model fails to capture the data, their algorithm

Figure 1. Microsaccades under different noise levels. Example single-trial eye position data from two subjects, measured with the

EyeLink eye tracker with the ‘‘Heuristic filter’’ option turned off. (A) Measured eye position in the plane (left) and horizontal and

vertical position as a function of time (right) for an easily detectable microsaccade. (B) Another trace, which contains an apparent

microsaccade buried in measurement noise. EK with the threshold multiplier set at six identities a microsaccade in (A) but not in (B).
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concludes that a microsaccade or saccade has occurred.
Instead, we build an explicit model of both micro-
saccades and drift, and compute the full posterior over
the eye state. Santini, Fuhl, Kubler and Kasneci (2016)
have proposed using a Bayesian classifier to separate
fixations, saccades, and smooth pursuits based on two
features: eye speed and a feature which distinguishes
smooth from abrupt motion. This algorithm was
applied to much lower resolution eye tracking data (30
Hz) than are typically used in psychology laboratories,
and while principled, it still relies on preprocessing
using a heuristic filter. This method seems to work for
separating saccades from drift, but we focus on the
harder problem of separating microsaccades from drift.

Methods

We develop a Bayesian algorithm for microsaccade
detection. First, we make explicit assumptions about
the statistical process by which the eye movement data
are generated from an underlying sequence of hidden
states alternating between drift and microsaccades.
Optimal Bayesian inference then entails inverting this
generative model to infer the probability of the hidden
eye state sequence given the measured eye position
data. The fact that our algorithm returns a probability

distinguishes it from earlier algorithms, which return
only a binary judgment.

The input of our inference algorithm is a time series
of measured eye positions. We conceptualize this time
series as being generated from an unknown internal
state, which at each time step is either drift/tremor (0)
or microsaccade (1). We distinguish the two by
asserting that they correspond to different velocity
distributions; this statistical definition stands in con-
trast to the traditional method, which uses a threshold.
The probability distributions that describe the process
by which the measure eye position time series arises
from the internal state are together called the genera-
tive model.

Assuming this generative model, we derive an
inference algorithm that estimates the time series of
hidden eye states given a particular measured eye
position time series. The algorithm considers many
candidate time series (e.g., 0001111100. . .
00111111111000) and calculates how consistent each
candidate is with the data; this is called the likelihood
of that candidate time series. Combining the likeli-
hoods with prior information about frequencies and
durations of microsaccades yields the posterior distri-
bution over time series. Because the space of candidate
time series is very large (260,000 for 1 min of data
sampled at 1 kHz), we use a suitable search algorithm
from the class of Markov-chain Monte Carlo (MCMC)
sampling algorithms.

Software

A computer package implementing our algorithm is
available at: https://github.com/basvanopheusden/
BMD.

Generative model

We formulate our model to generate eye position
data in 1-ms time bins, but this can be easily extended
to different sampling rates. We use boldface to denote a
time series of a variable. The eye state time series C has
length T. We assume that at time t, the eye is in a
hidden state Ct, which is 0 for a drift/tremor state and 1
for a microsaccade state (Figure 2). As long as the eye
remains in the same state, its two-dimensional velocity
vt remains constant; when the eye switches state, its
velocity changes. Of note, velocity here does not
represent the derivative of the measured eye position,
but rather an unobservable underlying variable.

At every time step, the eye’s two-dimensional
position zt gets augmented with the velocity and
Gaussian motor noise with covariance matrix Rz. This
eye position is augmented with Gaussian measurement

Figure 2. Generative model of fixational eye movements. (A)

Example time courses of the variables in our model. (B)

Graphical representation of our generative model for eye

position data, which is a hidden semi-Markov model. The eye

state, a latent binary variable Ct, is either a low-velocity drift/

tremor state (0) or a high-velocity microsaccade state (1). The

latent eye state informs the velocity vt, which together with the

preceding eye position zt�1 and motor noise yield the current

eye position zt. This eye position is contaminated with

measurement noise, yielding the measured eye position xt.
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noise with covariance matrix Rx (independent across
time points), yielding the measured eye position xt.

We define a change point of C as a time t where Ct 6¼
Ct�1, and denote the ith change point as si. The
duration for which the eye stays in a given state is then
Dsi ¼ siþ1 � si. We assume that C is a semi-Markov
process, which means that these durations are inde-
pendent. In a hidden Markov model (Bishop, 2006), the
probability of Ct depends only on the previous state,
Ct�1; however, in a hidden semi-Markov model (also
called an explicit-duration hidden Markov model; Yu,
2010), the durations over which the state remains
unchanged are independent. Then the prior probability
of C is

pðCÞ ¼
Y
i

pðDsijCsiÞ; ð1Þ

where p(DsijCsi) is the state-specific probability of the
duration. Specifically, we use a gamma distribution
with shape parameter 2 and scale parameter k:

pðDsjCÞ}Ds e�kDs; ð2Þ
where k¼k0 if C¼ 0 (drift/tremor) and k¼k1 if C¼ 1
(microsaccade). We choose this distribution because it
makes very short and very long durations unlikely,
consistent with previously reported distributions of
durations for drift and microsaccades (Engbert, 2006).
Assumptions about the frequency and duration of
microsaccades are reflected in the choices of parametersk0
andk1.Wechosek0¼4 s�1 andk1¼100 s�1, corresponding
to median durations of 260 ms for drift and 10 ms for
microsaccades (Figure 3A, B), which are realistic (Eng-
bert, 2006). We will later examine the robustness of our
results to variations in k0 and k1 (Figure A6).

At each change point si, we draw the velocity vsi from
a state-specific probability distributionpðvsi j CsiÞ; this
velocity remains constant until the eye switches state at
siþ1. The distribution of the velocity time series v given
an eye state time series C is

pðvjCÞ ¼
Y
i

pðvsi jCsiÞ
Ysiþ1�1

t¼siþ1

dðvt � vt�1Þ
" #

: ð3Þ

To define the state-specific velocity distribution, we
write v in polar coordinates, v ¼ (rcosh, rsinh)T, and
assume that in both states, the direction of the velocity
h is uniformly distributed and its magnitude r follows a
generalized gamma distribution

pðrjCÞ ¼ 2

C dþ1
2

� �
ðr

ffiffiffi
2
p
Þdþ1

� � rde� r2

2r2 ; ð4Þ

where d¼d0 and r¼r0 if C¼0, and d¼d1 and r¼r1 if
C ¼ 1. Note that our definition of the generalized
gamma distribution differs from that of Stacy (1962) by
a reparametrization d� dþ1, r� r

ffiffiffi
2
p

. We fix d0 to 1,
which is equivalent to assuming that the distribution of
the two-dimensional velocity in the drift/tremor state is
a circularly symmetric Gaussian with standard devia-
tion r0. The other parameters d1 and r1 control the
shape and scale, respectively, of the distribution of
microsaccade velocities. Figure 3B shows examples of
these velocity distributions.

The eye position time series z is piecewise linear with
velocity v, plus motor noise, which follows a Gaussian
distribution with covariance matrix Rz:

pðzjvÞ ¼
YT
t¼1

pðztjzt�1; vtÞ ¼
YT
t¼1

Nðzt; zt�1 þ vt;RzÞ:

ð5Þ
The observed eye position time series x is equal to z

plus Gaussian measurement noise that is independent
across time and has covariance matrix Rx:

pðxjzÞ ¼
YT
t¼1

pðxtjztÞ ¼
YT
t¼1

Nðxt; zt;RxÞ: ð6Þ

Motor and measurement noise are in principle
distinguishable, because changes in the eye position due

Figure 3. Prior distributions used in the algorithm. (A) Prior distributions over the durations of drift and microsaccade states. These

priors are fixed in the inference process. (B) Priors for eye velocity for drift and microsaccade states. The inference process estimates

the parameters of these priors from data; here we show the priors estimated for one example subject (EyeLink S1; Table 2). Note that

these distributions are not normalized.

Journal of Vision (2017) 17(1):13, 1–23 Mihali, van Opheusden, & Ma 4

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/935953/ on 09/12/2017



to motor noise are added over time, whereas measure-
ment noise is independently added at each time point.
We assume that both covariance matrices are isotropic:
Rz ¼ r2

zI and Rx ¼ r2
xI. Before we analyze data, we

rescale the vertical dimension of the measured eye
positions so that the isotropy assumption is approxi-
mately satisfied (see Preprocessing, later).

Inference of the eye state time series C

Our goal is to infer the eye state time series C given a
time series of measured eye positions x, using the
generative model. To perform optimal inference, we
need to compute the posterior distribution over C. By
Bayes’s rule, this posterior is proportional to the
product of the prior p(C) and the likelihood p(xjC):

pðCjxÞ}pðCÞpðxjCÞ: ð7Þ
The prior can be directly evaluated using Equations

1 and 2, but computing the likelihood requires
marginalization over nuisance parameters, the velocity
time series v and the eye position time series z, using the
dependencies given by the generative model:

pðxjCÞ ¼
RR
pðxjzÞpðzjC; vÞpðvjCÞ dv dz: ð8Þ

Plugging in the functional form of these distributions,
and performing some algebra (see Computation of the
likelihood in the Appendix), yields the likelihood of C:

pðxjCÞ}
Z Y

t

e
�ðzt�zt�1ÞTðzt�zt�1Þ

2r2
z

� ðxt�ztÞ
Tðxt�ztÞ

2r2
x

" #

3
Y
i

R
pðvsi jCsiÞe

�
ðsiþ1�siÞvTsi vsi

2r2
z

þ
ðzsiþ1�zsi Þ

Tvsi
r2
z dvsi

" #
dz:

ð9Þ

Approximate inference

The goal of our algorithm is to draw samples from
the posterior p(Cjx). First we need to evaluate the
likelihood in Equation 9. This is difficult, because we

need to integrate both over the velocities at all change
points, fvs i

g, and over the eye position time series z.
The velocity integral is numerically tractable, but the
eye position one is not. Moreover, the likelihood also
depends on the unknown parameters r0, r1, d1, rz, and
rx. A fully Bayesian algorithm would require priors
over these parameters to jointly infer the parameters
together with the eye state time series C. This too is
intractable.

Instead, we use a multistep approximate inference
algorithm, which we name Bayesian microsaccade
detection (BMD), outlined in Table 1. A key idea in
this algorithm is to replace the marginalization over z
by a single estimate, reminiscent of expectation
maximization. Our algorithm then alternates between
estimating C, z, and the parameters for six iterations,
which in practice suffices for the estimates to converge.
To run BMD on an eye position time series of 1 min
(60,000 time steps) takes approximately 40 s on a
MacBook Pro with an Intel Core i7 with a 2.9 GHz
processor and 8 GB of RAM.

Although BMD returns a probability over eye state
at every time point, for most of the following analyses
we will threshold these probabilities at 0.5 in order to
obtain binary judgments.

We now describe the details of the steps of the BMD
algorithm.

Preprocessing

We split the eye position data into blocks of ;1
min, which we process independently. Before we
perform inference, we preprocess the data to match
the isotropy assumption of the measurement and
motor noise in our generative model. To do so, we
observe that within our model, eye velocity is
piecewise constant, and therefore its derivative is zero
except at change points. This means that the
acceleration of the measured eye position depends
only on the motor and measurement noise, except at
change points. For this reason, we use the median
absolute deviation of the acceleration to estimate the
noise level. We calculate this quantity separately in the
horizontal and vertical dimensions, and rescale the
vertical-position time series by the ratio of the
outcomes. After rescaling, the noise distribution is
approximately isotropic.

The algorithm utilizes measured eye position at
boundary unobserved time points x0 and xTþ1. For
these, we choose x0¼x1� e and xTþ1¼xTþ e, where e¼
(10�4, 10�4)deg. We need to include the offset e to avoid
numerical instabilities in our implementation. Finally,
we subtract the resulting value of x0 from every point in
the time series, so that x0¼ 0; this has no effect on the
detected microsaccades.

Step Operation

0 Initialize C, br1, bd1, br0

1 Estimate the motor and measurement noise: r̂z, r̂x

2 Estimate ẑ from observations x: Kalman smoother

3 Sample from the posterior over C: MCMC

4 Estimate the velocity distribution parameters: maximum

likelihood estimation (MLE)

Return to Step 1

Table 1. BMD algorithm.
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Step 0: Initialize C, br1, bd1, br0

We fix d0 to 1. We initialize r̂0, r̂1, and d̂1 to
random values drawn from reasonable ranges (r̂0:
[0.1, 5] deg/s, r̂1: [5, 100] deg/s, and d̂1: [1.1, 5]). We
initialize C by setting Ct to 1 for time points t where
jjxt � xt�1jj is in the highest percentile, and to 0
otherwise.

Step 1: Estimate the motor and measurement noise

Our first goal is to estimate rx and rz given a
measured eye position time series x and an estimated
eye state time series Ĉ. As stated before, we can
disentangle motor and measurement noise because, in
our generative model, motor noise accumulates over
time while measurement noise does not. Specifically,
the autocovariance function of x conditioned on v at
time lag s is

covðxt;xt�sÞ ¼ 2r2
zsþ 4r2

x: ð10Þ
To use this relationship, we first estimate v by fitting x

as a piecewise linear function with discontinuities at the
change points of C. Then we calculate the empirical
autocovariance function of the residual,

cempðsÞ ¼
1

T

XT
t¼sþ1

exT
t ext�s; ð11Þ

and fit this as a linear function of s; this gives a slope and
a y-intercept. Our estimates of the motor noise and

measurement noise are brz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
slope=2

p
and brx ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

yintercept=4
p

:

Step 2: Estimate z from observations x with Kalman
smoother

We cannot compute the likelihood of the eye state
time series, p(xjC) in Equation 9, because the integral
over z is both analytically and numerically intracta-
ble. However, the integral over vsi depends only on
zsiþ1
� zsi : The expected value of this difference is

equal to ðsiþ1 � siÞv̄, where v̄ is the average velocity
between the change points; its standard deviation is of
the order of rz. Therefore, if either v̄ or siþ1 � si is
sufficiently large (we expect the former to hold for
microsaccades and the latter for drift), we can neglect
the uncertainty in zsiþ1

� zsi and approximate it by a
point estimate.

We obtain the point estimate of z given x by
maximizing the first integral in Equation 9. This
maximization turns out to be equivalent to applying a
Kalman smoother to x (Kalman, 1960; Welch &
Bishop, 2006). In general, a Kalman smoother
estimates the system state in a time interval from
noisy observations during the same interval. The

optimal estimate turns out to be a linear filter. We
implement the Kalman smoother with the Rauch–
Tung–Striebel (RTS) algorithm, which applies a
Kalman filter to x followed by another Kalman filter
to the output of the first filter, backward in time
(Rauch, Tung, & Striebel, 1965; Terejanu, 2008). The
Kalman filter estimates the system state at each time
only from earlier observations. In our case, the RTS
algorithm reduces tobyt ¼ byt�1 þ Kforwardðxt � byt�1Þ; ð12Þ

with Kforward ¼ ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4R2
p

Þ=ð1þ 2R2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4R2
p

Þ;
where R ¼ rx

rz
; andbzt ¼ bztþ1 þ Kbackwardðyt � bztþ1Þ; ð13Þ

with Kbackward ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4R2
p

� 1Þ=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4R2
p

þ 1Þ: For
more details, see Kalman smoother in the Appendix.

Given our generative model, the Kalman smoother is
the optimal filter to denoise the measured eye position.
The EyeLink eye tracker software also has a denoising
option, called ‘‘Heuristic filter,’’ which is based on an
algorithm by Stampe (1993). This filter is suboptimal
given our generative model and therefore, assuming
that our generative model is realistic, will perform
worse in separating signal from noise than the Kalman
smoother.

Step 3: Sample from the posterior over the eye state time
series C

We draw samples from the posterior p(Cjẑ, r0, r1, d1,
rz) using MCMC sampling with Metropolis–Hastings
acceptance probabilities. Using the prior over veloci-
ties, Equation 5, and the property of the delta function,
we can compute the posterior as

pðCjbzÞ ¼Y
i

Z
pðvsi jCsiÞe

�
ðsiþ1�siÞvTsi vsi

2r2
z

þ
ðzsiþ1�zsi Þ

Tvsi
r2
z dvsi :

ð14Þ
Each term in this product is an independent integral

over vsi , which depends only on zsiþ1
� zsi , siþ1� si, and

implicitly the eye state Csi through the parameters d
and r in the prior pðvsiÞ. We can therefore write

pðbzjCÞ ¼Y
i

Iðzsiþ1
� zsi ; siþ1 � si; dCsi

; rCsi
Þ; ð15Þ

with

IðDz;Ds; d; rÞ ¼ 1

2p

Z Z
pðrjd; rÞ

3 e
� Ds

2r2
z
r2þ 1

r2
z
Dz� rcosh

rsinhð Þ
dr dh: ð16Þ
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This integral can be evaluated to

IðDz;Ds; d; rÞ ¼ 2
1�d

2

rdþ1C dþ1
2

� � r2
z

jjDzjj

� �dþ1

3A d;
r4
z

2jjDzjj2
1

r2
þ Ds

r2
z

� � !
;

ð17Þ
where

Aðd; aÞ ¼
Z ‘

0

sde�as2

I0ðsÞ ds; ð18Þ

with I0 the modified Bessel function of the first kind.
(For details, see the Appendix under From Equation 16
to Equation 17.) We solve this integral analytically in
the limits a � 0 and a � ‘, which correspond to
jjDzjj � ‘ and jjDzjj � 0, respectively. For interme-
diate a, we solve the integral numerically.

The details of the MCMC algorithm we use to
sample from the posterior p(Cjẑ) are presented in the
Appendix under MCMC sampling. The MCMC
algorithm returns a set of 40 samples Ĉj. On the last
iteration, we convert these samples into a probability
time series by averaging them. For some applications,
we subsequently transform from probabilities to binary
values by thresholding at 0.5. This operation minimizes
the absolute-value cost function

CostðbC;CÞ ¼XT
t¼1

j bCt � Ctj: ð19Þ

Step 4: Estimate the velocity distribution parameters

We infer the global velocity distribution parameters
r0, r1, and d1 by maximizing p(ẑjĈj, r0, r1, d1, rz) with a
grid search for each sample Ĉj and then taking the
median across samples. The grid ranges are [0.1, 100]
deg/s for r0 and r1 and [1.1, 5] for d1.

Alternative algorithms

EK velocity threshold

The EK algorithm starts by averaging the measured
eye position time series across a triangular sliding
window and differentiating it to obtain a velocity time
series. The algorithm detects microsaccades whenever
the velocity exceeds a threshold gx for the horizontal
dimension and gy for the vertical dimension for a
sufficiently long duration. The thresholds are adap-
tively set as a multiple of the standard deviation of the
eye movement velocity, using a median-based estimate
of the standard deviation:

gx;y ¼ k
�

medianðv2
x;yÞ �medianðvx;yÞ2

�
: ð20Þ

The size of the sliding window, the multiplier k, and
the minimum duration are free parameters set by the
user. Of these, k tends to have the largest effect on the
detected microsaccades.

In their original article, Engbert and Kliegl (2003)
used a triangular sliding-window size of 6 for 500-Hz
data, a duration threshold of 12 ms, and a relatively
conservative velocity threshold multiplier of k¼ 6. This
value is used in most subsequent studies. Other studies
have used a more liberal threshold (Engbert &
Mergenthaler, 2006). We consider two particular cases
of k ¼ 3 and k¼ 6, which we will refer to as EK3 and
EK6, respectively.

Unsupervised clustering

More recently, Otero-Milan et al. (2014) have
proposed a threshold-free microsaccade detection meth-
od, which we will refer to as OM. It uses an unsupervised
clustering algorithm, k-means, to group putative events
obtained from the EK algorithm into clusters of micro-
saccades or drift. The algorithm separates drift and
microsaccade events using three features: peak velocity,
initial acceleration peak, and final acceleration peak.
Here we use the implementation provided by Otero-
Milan et al. as obtained from their website (http://smc.
neuralcorrelate.com/sw/microsaccade-detection/).

EyeLink experimental methods

This study was approved by the New York
University Institutional Review Board, in accordance
with the Declaration of Helsinki. Five subjects (two
women and three men) of median age 26 years (range:
20–36 years) performed the task after providing
informed consent.

Apparatus

We displayed stimuli on a 21-in. Sony GDMF520
CRT monitor (resolution: 1280 3 960 pixels, refresh
rate: 100 Hz). Subjects used a headrest located
approximately 57 cm from the screen. The screen
background was gray (57 cd/m2). An Apple iMac
computer running MATLAB 7.1 (MathWorks, Natick,
MA) with the Psychtoolbox (Brainard, 1997; Kleiner et
al., 2007; Pelli, 1997) and EyeLink (Cornelissen, Peters,
& Palmer, 2002) extensions controlled stimulus pre-
sentation and response collection. We recorded eye
movements using a remote infrared video-oculographic
system (EyeLink 1000; SR Research, Ltd., Mississauga,
Ontario, Canada) with a 1-kHz sampling rate, precision
of 0.01 deg, and average accuracy of 0.258–0.5 deg,
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according to the manual (but see Holmqvist et al.,
2011; Poletti & Rucci, 2016). We acquired eye position
data with the EyeLink software. We set the ‘‘Heuristic
filter’’ option to off to obtain the raw data.

Procedure

Subjects performed a delayed-estimation-of-orienta-
tion delayed-estimation task, as introduced by Wilken
and Ma (2004). A trial sequence started with the
appearance of a central white fixation cross subtending
a visual angle of 0.3 deg, which lasted for 500 ms or
until the subject successfully fixated. We defined
fixation to be successful when the eye position remained
within a 2 deg circle centered at the fixation cross. Next,
two stimuli appeared 6 deg to the right and left of the
central fixation cross. The stimuli were circularly
windowed gratings with radius 0.35 deg, spatial
frequency 2.5 cycles/deg, and uniformly drawn orien-
tation. The stimuli stayed on the screen for 11 frames
(about 110 ms), followed by a delay period of 1000 ms.
If the subject broke fixation at any point during the
stimulus or delay period, the trial was aborted and a
new trial sequence started. We eliminated these trials
from our data set. After the delay period, the subject
was probed about one of the locations and responded
by using the mouse to estimate the orientation. More
precisely, when the subject moved the mouse, a
windowed grating appeared inside that circle. The
subject had to rotate it using the mouse to match the
orientation of the grating that had been in that
location, and then press the space bar to submit a
response. The experiment consisted of eight blocks,
each consisting of 60 completed (nonaborted) trials
with 30-s breaks in between blocks.

Dual Purkinje Image experimental methods

The Dual Purkinje Image (DPI) eye tracker data were
made available by Martina Poletti and Michele Rucci.
Their study was approved by the institutional review
board of Boston University. The method and data were
described in detail elsewhere (Cherici, Kuang, Poletti, &
Rucci, 2012); we summarize them here.

Apparatus

Stimuli were presented on a custom-developed
system for flexible gaze-contingent display control on a
fast-phosphor CRT monitor (Iiyama HM204DT) with
a vertical refresh rate of 150 Hz. The movements of the
right eye were measured with a Generation 6 DPI eye
tracker (Fourward Technologies, Buena Vista, VA) at a
1-kHz sampling rate. While most video-based eye
trackers detect only the first corneal reflection (Purkinje

reflection), DPI eye trackers detect both the first and
fourth Purkinje reflections, allowing discrimination
between eye movements of rotation and translation.
The DPI eye tracker has a high precision, of 0.0068
(Cherici et al., 2012; Crane & Steele, 1985).

Procedure

Subjects observed the screen with the right eye while
wearing an eye patch on their left eye. A dental-imprint
bite bar and a headrest prevented head movements.
Subjects were asked to maintain sustained fixation
while looking at a marker displayed on the screen. Two
subjects performed the task.

Results

Comparison of algorithms on simulated data

We created 36 data sets with eye position time series
of length T¼ 60,000 ms according to the generative
model. We created every combination of six chosen
values of motor noise and six values of measurement
noise. We fixed the velocity distribution parameters at r0

¼ 0.38/s, d1¼ 4.4, and r1¼ 308/s, to approximate realistic
microsaccade kinematics (Engbert, 2006). We inferred
the eye state time series with the BMD algorithm and the
standard EK algorithm, which uses a velocity threshold
multiplier of 6 (referred to as EK6). After thresholding
the BMD inferences, we evaluated their performance in
terms of the hit rate (defined as the proportion of 1s
correctly identified in the C time series) and the false-
alarm rate (the proportion of 1s wrongly identified in the
C time series; Figure 4). While the velocity distribution
parameters were not perfectly recovered (Figure A3), the
BMD hit rates were very high (Figure 4A). The hit rate
of the BMD algorithm decreases with increased motor
noise, as in standard signal detection theory, but it is
remarkably robust to increased measurement noise. By
contrast, the hit rate of EK6 is lower and more affected
by the noise level. In EK6, the false-alarm rate decreases
with increasing noise because the threshold adapts to the
noise level. Across the board, BMD has false-alarm rates
comparable to EK6’s but much higher hit rates,
especially at high noise.

For a more comprehensive evaluation, we also
compare BMD against OM and an EK variant with a
velocity threshold multiplier k¼ 3 (EK3; Figure 5). As
performance metrics, we use the error rate in identify-
ing the eye state at every time point, the number of
microsaccades per unit time, and the hit and false-
alarm rates. BMD has a lower error rate than all
alternative algorithms in 30 out of 36 noise levels. As in
Figure 4, the improvement of BMD over alternative
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algorithms is larger for higher noise. BMD has a hit
rate close to 1 in all but the highest level of motor noise,
whereas the false-alarm rate is comparable to those of
other algorithms. The BMD algorithm is more robust
than all other algorithms: Its hit rate and microsaccade
rate vary only weakly with increasing measurement
noise.

As expected from signal detection theory, there is a
trade-off between false alarms and misses in the EK
algorithm. EK6 is too conservative, leading to more
misses than BMD; however, EK3 is too permissive and
has more false alarms. To test whether the EK
algorithm with any threshold can match BMD’s
performance, we compute a receiver operating charac-
teristic (ROC; Figure 6). At low noise, both BMD and
EK perform close to perfectly. Overall, BMD outper-
forms or matches EK at all other noise levels. However,
in cases where BMD performance matches that of EK,
BMD intersects the EK ROC curves for different
thresholds at different noise levels. This makes choos-
ing a single best threshold problematic.

Applications to real data

The results on simulated data suggest that BMD
recovers microsaccades more faithfully than alternative
algorithms, especially at high noise. This confirms that
the approximations in our inference algorithm do not
significantly impair its performance. However, we
created data according to our generative model, so we
expected the BMD algorithm to be superior. Next, we

apply our algorithm to real eye-tracking data measured
with two different eye trackers: EyeLink and DPI.

EyeLink data

In Figure 7, we show six example measured eye
position sequences and the inferred change points by
BMD and EK6. When the signal-to-noise ratio is high
(Figure 7A through C), BMD generally infers the same
microsaccades as EK6. Additionally, BMD returns a
probabilistic judgment of the beginning and end time of
the microsaccade. In some cases, BMD detects a small
microsaccade immediately after a larger one, in the
opposite direction (Figure 7B, C), corresponding to the
overshoot. For low signal-to-noise data (Figure 7D
through F), the BMD algorithm tends to detect
potential microsaccades that EK6 misses, but they
could be false positives. BMD assigns low confidence to
its judgments in ambiguous cases like Figure 7D and F.

The microsaccades detected by BMD have similar
kinematics as previously reported (Engbert, 2006; Figure
A4). The inferred velocity and duration distributions of
BMD and EK6 are similar, except for the duration
cutoff in EK6. Most importantly, the microsaccades
detected by BMD follow the main sequence: Their
amplitude is monotonically related to their peak velocity
(Zuber, Stark, & Cook, 1965). As in Engbert and Kliegl
(2003), we consider the approximate recovery of the
main-sequence relationship to be evidence for the
validity of our detection algorithm. Our algorithm
estimates the mean velocity for drift as 0.1253 deg/s for
all but one subject, and 22.64 6 8.4 deg/s (mean and

Figure 4. Performance of the BMD and EK6 algorithms on simulated data. (A) Hit rates of the BMD algorithm as a function of the

motor noise rz for several values of measurement noise rx. Points and error bars represent means and standard errors across eight

simulated data sets. (B) Hit rates of the EK6 algorithm. (C) Scatterplot comparing hit rates of both algorithms. Each point corresponds

to a different pair (rz, rx). (D–F) The same as (A–C) for false-alarm rates.
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standard error across subjects) for microsaccades. These
values are in line with literature reports: mean drift
velocity of 0.858/s (Poletti, Aytekin, & Rucci, 2015) and
below 0.58/s (Engbert, 2006; Rolfs, 2009), and mean
microsaccade velocity of ;30 deg/s.

Overall, BMD detects more microsaccades than EK6
for all five subjects (Figure A5). This difference can be
dramatic: For two subjects (S3 and S4), EK6 infers no
microsaccades at all, whereas BMD infers micro-
saccade rates up to 2.1 per second. This further suggests
that EK6 is too conservative and misses microsaccades
when the measurement noise is high. The other
algorithms (OM and EK3) are less conservative, but
their inferred microsaccade rates vary widely, rein-
forcing the need for a more principled microsaccade
detection algorithm.

Finally, we ask how dependent the microsaccade rate
inferred by BMD is on the choice of parameters in the
priors over the frequency and duration of micro-
saccades. We vary both k0 and k1 by an order of

magnitude and show that the inferred microsaccade
rate is approximately constant (Figure A6), making the
BMD algorithm robust to the choice of the prior in a
plausible range.

These results suggest that BMD outperforms EK6
with real data. Specifically, BMD detects many
plausible microsaccades that EK6 misses, especially
when their amplitude is small and the noise is high.
However, an alternative interpretation is that BMD
detects false positives. We cannot distinguish these
possibilities because, in contrast to the simulated data,
we do not know the ground truth. In general, we know
that all four algorithms give different inferences, but
without ground truth we have no way of establishing
which one is better.

DPI data

To address this problem, we use another data set,
provided by Poletti and Rucci (Cherici et al., 2012).

Figure 5. Performance of several algorithms on simulated data. Colors represent four different algorithms: OM, two versions of EK,

and BMD. We evaluate performance with four different metrics: (A) error rate, (B) microsaccade rate, (C) hit rate, and (D) false-alarm

rate. The motor noise rz increases across columns, and the measurement noise rx increases within each subplot. BMD has the lowest

error rates at high noise levels and is the most robust against increases in both rz and rx. BMD hit rates and microsaccade rates are

the most robust against increases in either rz or rx, without a major increase in false-alarm rates.
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These eye movements were measured with the more
precise DPI eye tracker (Cherici et al., 2012; Crane &
Steele, 1985). Indeed, BMD infers that the geometric
mean of the measurement noise level in DPI data is
almost an order of magnitude lower than in EyeLink
data (Table 2). In simulated data with the same noise
level as BMD infers for DPI, all algorithms perform
close to perfectly. In view of this high performance, we

can treat the microsaccades inferred from the raw DPI

data (averaged across algorithms) as ground truth. Our

strategy is to artificially add increasing amounts of

measurement noise to the raw data and see how much

the inference of each algorithm degrades as a result.

This allows us to compare the robustness of the

algorithms with an objective metric.

Figure 6. Performance of the algorithms on simulated data visualized relative to the EK ROC curve. The red and green dots represent

the combination of hit rate and false-alarm rate for BMD and OM, respectively. The EK ROC curves were created with different values

of the threshold multiplier k. EK3 and EK6 correspond to points on the curve. For all noise levels tested, including the ones presented

here, BMD either outperforms both OM and EK or matches EK.

Figure 7. Inferences of microsaccades by BMD and EK6 on example eye position sequences measured with the EyeLink eye tracker.

The black and white shading represents the probability that the eye is in a microsaccade state, with black indicating certainty. Every

subplot shows the BMD inference in the top half and the EK6 inference in the bottom half. (A–C) Often, BMD and EK6 infer nearly

identical microsaccade sequences. (D–F) BMD infers potential microsaccades that EK6 misses, especially when they are small or noisy.
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We compare the error rates as well as the micro-
saccade rates, hit rates, and false-alarm rates between
BMD, OM, EK3, and EK6 (Figure 8). BMD
outperforms EK3, EK6, and OM at all except the
lowest noise levels. In particular, at measurement
noise levels comparable to the ones inferred in
EyeLink data (0.02 deg), the error rate for EK6 is
3.22% (averaged across subjects), while BMD achieves
1.48%—a 54% improvement. Note that all algorithms
have low error rates, primarily because microsaccades
are rare. As in simulated data, we compare BMD to
EK with different thresholds by plotting an ROC
curve; BMD outperforms EK regardless of its
threshold (Figure 9).

Variants of BMD

A common risk in Monte Carlo methods is that the
samples aggregate near potential local maxima of the
posterior and miss the global maximum. One method
to mitigate this problem, albeit at increased compu-

tational cost, is parallel tempering (Earl & Deem,
2005; Newman & Barkema, 1999). BMD with parallel
tempering does not significantly outperform BMD
either for simulated data (Figures 10 and 11) or for
real DPI data with added noise (Figure 12), suggesting
that the posterior probability landscape did not
contain many local maxima. To investigate which
components of our method are necessary for its
performance, we compare BMD against three reduced
variants. We obtain the first variant by reducing the
number of iterations in the approximate inference
method from six to two. The second variant has only
one iteration, which is equivalent to applying a
Kalman smoother to obtain ẑ from x, then sampling
from p(Cjẑ).

Finally, a third version, BMDreducedþ threshold,
starts with Steps 0–2 of the BMD algorithm. However,
instead of sampling from the posterior p(Cjẑ) in Step 3,
it estimates C by applying a Kalman smoother (after
the Kalman smoother of Step 2) to ẑ to obtain a
smoothed eye position time series, differentiating that
to obtain eye velocities, and thresholding the velocity

Subject r̂z (
degffiffiffiffi
ms
p ) r̂x deg d̂1 r̂0 (deg/s) r̂1 (deg/s)

EyeLink S1 0.01397 0.0249 1.1 0.1 27.5

EyeLink S2 0.00723 0.0165 1.1 0.1 13.1

EyeLink S3 0.01317 0.10379 4.961 0.1 7.58

EyeLink S4 0.01265 0.0182 1.1 0.1 0.1

EyeLink S5 0.00637 0.02327 1.1 15.8 33.1

DPI S1 0.014 0.025 1.1 0.1 27.5

DPI S2 0.014 0.025 1.1 0.1 27.5

Table 2. Parameter inference.

Figure 8. Performance of the algorithms on DPI data. We took DPI data from two subjects (rows), collected by Cherici et al. (2012),

and artificially added measurement noise to the eye position traces. Colors represent algorithms. BMD shows the highest robustness

to adding measurement noise; specifically, error rates are lowest and hit rates tend to stay the same.
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time series (Figure 13). We fix the window size of the
Kalman smoother to 5.32 ms and use a threshold
which scales linearly with the inferred motor noise
level: threshold¼ ar̂zþ b, with a¼ 32

ffiffi
s
p �1

and b¼ 1
deg/s. We chose these values to approximately match
the output of BMD and BMDreducedþ threshold in real
and simulated data. This method performs about as
well as the full inference algorithm. However, it is
unprincipled, does not return a probabilistic estimate,
and cannot be directly extended to more sophisticated
generative models.

Discussion

We developed a Bayesian algorithm for detecting
microsaccades among drift/tremor; it returns probabi-
listic rather than binary judgments. Given our as-
sumptions about the statistical process generating a
measured eye position time series, this algorithm is
optimal. BMD has lower error rates than the algo-
rithms proposed by Engbert and Kliegl (2003) and
Otero-Millan et al. (2014), especially at high noise. This
is a particularly useful feature given the relatively high
measurement noise of current infrared eye trackers.
However, a hybrid between BMD and velocity-
threshold algorithms, BMDreduced þ threshold, can
sometimes approach BMD’s performance.

In our model, microsaccades are defined through
prior probability distributions over velocity and dura-
tion that are different from those for drift/tremor
(Figure 2). This definition contrasts with the more
common one that uses an arbitrary velocity threshold.
The BMD algorithm (and the actual code) allows
researchers to easily build in their own prior beliefs and

state clearly which of their findings depend on those
beliefs.

We designed the BMD algorithm for off-line analysis
of eye tracker data. An online detection method—for
example for closed-loop experiments that require real-
time detection of microsaccades, such as in Chen and
Hafed (2013) and Yuval-Greenberg et al. (2014)—
would require a modified inference algorithm. If it is
crucial to detect microsaccades online, we recommend
using BMDreduced þ threshold, with a Kalman filter
(only the forward filter) instead of the Kalman
smoother.

We designed and tested BMD for detecting micro-
saccades in fixational eye movement data obtained
under head-fixed conditions, where the fixation point
does not move. Would the algorithm readily apply to
other kinds of eye movement data? First, head-free
recordings are sometimes used in order to better mimic
naturalistic conditions (Benedetto, Pedrotti, & Bridge-
man, 2011; Martinez-Conde, Macknik, Troncoso, &
Dyar, 2006; Poletti et al., 2015). In theory, our
algorithm is suitable for inferring microsaccades in
head-free recordings. However, studies have reported
higher velocities for drift in head-free fixation (Poletti et
al., 2015; Skavenski, Hansen, Steinman, & Winterson,
1979)—for example, on average 1.58/s for head-free
versus 0.85 deg/s for head-fixed in Poletti et al. (2015).
Therefore, we expect the velocity distributions pre-
sented in Figure 3B to be less separable, which in turn
would impair microsaccade detection. Second, our
algorithm is not immediately applicable to smooth
pursuit, in which the eye continuously tracks the
motion of an object. Santini, Fuhl, Kubler, and
Kasneci (2016) used a Bayesian classification algorithm
to separate drift, saccades, and smooth pursuit based
on features derived from the eye position data, but this

Figure 9. Performance of the algorithms on DPI data with added noise relative to the EK ROC curve. We show the same two subjects

(S1 and S2) as in Figure 8. The level of the added measurement noise varies across columns. The EK ROC curves were created with

different values of the threshold multiplier k. EK3 and EK6 correspond to points on the curve. As more measurement noise is added,

BMD outperforms EK and OM by larger amounts.
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Figure 11. Performance of BMD variants on simulated data visualized relative to the ROC curves for BMDreducedþ threshold. Here we

show hit rates with false-alarm rates points for BMD variants and ROC curves for BMDreducedþ threshold for several values of the

threshold multiplier. In contrast to Figure 10, where we choose one threshold, here we see that the BMD-variant points are on the

ROC curves at low noise (first two subplots). However, as the motor and measurement noise increase (last two subplots), the full ROC

curve can reach higher performance than the variant BMD algorithms.

Figure 10. Performance of BMD variants on simulated data. The variants we examine are BMD with parallel tempering, BMD with

fewer iterations (two and one), and a reduced variant of BMD with a threshold (BMDreducedþ threshold). In the latter model, the

threshold is dependent on motor noise through the equation threshold ¼ 32
ffiffi
s
p �1brz þ 1 deg=s, chosen because it gave the lowest

error rates on DPI data. The motor noise rz increases across columns, and the measurement noise rx increases within each subplot.

BMD with parallel tempering is only a slight improvement over BMD, while BMD performs slightly better than BMD with two and one

iterations. BMDreduced þ threshold only performs comparably with BMD under high motor and measurement noise.
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algorithm does not have a generative model of the

entire time series. In our approach, we could amend our

generative model to include a third state, smooth

pursuit, with different duration and velocity distribu-

tions, but this would require a more complex inference

algorithm.

Caveat

BMD outperforms the alternative algorithms for
simulated and real data, on average. However, it
sometimes makes idiosyncratic mistakes. In simulated
data with low noise, for some visually salient micro-
saccades, BMD incorrectly identifies a microsaccade as
mostly drift, with very short microsaccades immedi-
ately before and after (see Figure A7). This mistake
happened 17 times in 36 3 8 simulations. This
particular mistake coincides with instances when the
algorithm overestimates r0 and underestimates d1,
which makes the drift and microsaccade velocity
distributions less separable. We could solve the
incorrect microsaccade inference with some post hoc
processing; however, this would introduce arbitrari-
ness. Instead, we accept this as a failure mode of our
algorithm: rare, exclusively at low noise, and easily
detectable.

Conceptual extensions of the algorithm

The inferred microsaccades depend on assumptions
in our generative model, which are simplistic and
incorrect. We can flexibly adjust these assumptions in
the generative model and modify the BMD algorithm
accordingly.

Correlated state durations

Our generative model assumes that the durations
over which the eye remains in either state are
independent. We can relax this assumption by changing
the duration prior; this does not affect the likelihood.

Figure 12. Performance of BMD variants on DPI data to which we add measurement noise. We show the same two subjects (S1 and

S2) as in Figure 8. We measure performance on the same metrics as before. For brevity, we show in (A) the error rates with fixed

threshold. In (B), we show the hit rates with false-alarm rates for the variant BMD algorithms relative to the ROC curve for BMDreduced

þ threshold. Adding parallel tempering to BMD makes little difference. Using fewer iterations negatively affects the hit rate.

BMDreducedþ threshold gives slightly lower error rates and seems to match the performance of BMD.

Figure 13. Schematic comparison of microsaccade detection

algorithms. All algorithms first perform a filtering operation to

eliminate the noise from the measured eye position time series

x. EK removes noise with a heuristically chosen filter; in

contrast, BMD and BMDreducedþ threshold use a Kalman

smoother, which optimally eliminates measurement noise in

our generative model. EK estimates the eye state time series by

taking the derivate of the eye position to yield the eye-velocity

time series, then thresholding those velocities. BMD, on the

other hand, marginalizes over velocity and samples from the

posterior distribution over eye states. BMDreducedþ threshold

uses a second Kalman smoother to eliminate some of the motor

noise and ultimately uses a velocity threshold which depends

on the motor noise.
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Binocular data

Our algorithm is designed to operate on monocularly
recorded eye position time series, but it can be extended
to binocular data. This can be accomplished simply by
changing all position and velocity vectors from 2-D to
4-D and adjusting the noise covariance matrices.

Tremor and saccades

We can add tremor (low-amplitude, high-frequency
oscillations; Ratliff & Riggs, 1950) or saccades as
additional states in our generative model, given
statistical descriptions of these processes. However, it
has been argued that microsaccades and saccades are
produced by the same process (Hafed & Krauzlis,
2012; Otero-Millan, Troncoso, Macknik, Serrano-
Pedraza, & Martinez-Conde, 2008; Zuber et al.,
1965).

Microsaccade dynamics

Our generative model assumes that the eye velocity is
constant throughout each microsaccade or drift state,
resulting in linear microsaccade trajectories. However,
real microsaccades, such as the ones in Figures 1 and 7,
have a smooth velocity profile, for which specific shapes
have been proposed (Abadi & Gowen, 2004). We could
incorporate a template for the characteristic temporal
profile of microsaccades into our generative model,
which would require only minor changes to the
inference algorithm.

Correlated measurement noise

We assumed that the measurement noise is uncor-
related across time, which allowed us to estimate the
eye position using a Kalman smoother (Step 2). We
can incorporate noise correlations into our generative
model if we replace the Kalman smoother in the
inference algorithm with a Gaussian process estima-
tor.

Conclusion

We conclude that Bayesian methods could signifi-
cantly improve microsaccade detection. The BMD
algorithm both is more principled and produces the
lowest errors on both simulated and real data. In
particular, it is substantially more robust to measure-
ment noise (which is especially useful given the
relatively high measurement noise of current infrared
eye trackers). The BMD algorithm can be extended to
build in more knowledge about the processes underly-
ing microsaccades.

Keywords: fixational eye movements, microsaccades,
detection, Bayesian model

Acknowledgments

WJM was supported by Grant R01EY020958 from
the National Eye Institute and Grant W911NF1410476
from the Army Research Office. We thank Martina
Poletti and Michele Rucci for providing the DPI data
set and for valuable discussions. We thank Marisa
Carrasco and her lab members, especially Bonnie
Lawrence, Ian Donovan, and Nick Murray-Smith, for
advice and access to their eye tracker. In addition, we
thank Eero Simoncelli, Roozbeh Kiani, Luigi Acerbi,
Emin Orhan, Aspen Yoo, and Will Adler for useful
conversations. We thank Paul Bays for sharing with us
a data set that allowed us to test an early version of our
algorithm.

*AM and BvO contributed equally to this article.
Commercial relationships: none.
Corresponding author: Andra Mihali.
Email: alm652@nyu.edu.
Address: Center for Neural Science, New York
University, New York, NY, USA.

References

Abadi, R. V., & Gowen, E. (2004). Characteristics of
saccadic intrusions. Vision Research, 44(23), 2675–
2690, doi:10.1016/j.visres.2004.05.009.

Abramowitz, M., & Stegun, I. (1965). Handbook of
mathematical functions. Mineola, NY: Dover.

Benedetto, S., Pedrotti, M., & Bridgeman, B. (2011).
Microsaccades and exploratory saccades in a
naturalistic environment. Journal of Eye Movement
Research, 4(2), doi:10.16910/jemr.4.2.2.

Bettenbuehl, M., Paladini, C., Mergenthaler, K.,
Kliegl, R., Engbert, R., & Holschneider, M. (2010).
Microsaccade characterization using the continu-
ous wavelet transform and principal component
analysis. Journal of Eye Movement Research, 3(5),
doi:10.16910/jemr.3.5.1.

Bishop, C. M. (2006). Pattern recognition and machine
learning. Secaucus, NJ: Springer-Verlag.

Brainard, D. H. (1997). The Psychophysics Toolbox.
Spatial Vision, 10(4), 433–436.

Chen, C.-Y., & Hafed, Z. M. (2013). Postmicrosaccadic
enhancement of slow eye movements. The Journal

Journal of Vision (2017) 17(1):13, 1–23 Mihali, van Opheusden, & Ma 16

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/935953/ on 09/12/2017



of Neuroscience, 33(12), 5375–5386, doi:10.1523/
jneurosci.3703-12.2013.

Cherici, C., Kuang, X., Poletti, M., & Rucci, M. (2012).
Precision of sustained fixation in trained and
untrained observers. Journal of Vision, 12(6):31, 1–
16, doi:10.1167/12.6.31. [PubMed] [Article]

Ciuffreda, K. J., & Tannen, B. (1995). Eye movement
basics for the clinician. St. Louis, MO: Mosby.

Collewijn, H., & Kowler, E. (2008). The significance of
microsaccades for vision and oculomotor control.
Journal of Vision, 8(14):20, 1–21, doi:10.1167/8.14.
20. [PubMed] [Article]

Cornelissen, F. W., Peters, E. M., & Palmer, J. (2002).
The Eyelink Toolbox: Eye tracking with MATLAB
and the Psychophysics Toolbox. Behavior Research
Methods, Instruments, & Computers, 34(4), 613–
617, doi:10.3758/bf03195489.

Cornsweet, T. N. (1956). Determination of the stimuli
for involuntary drifts and saccadic eye movements.
Journal of the Optical Society of America, 46(11),
987–988.

Crane, H. D., & Steele, C. M. (1985). Generation-V
Dual Purkinje Image eyetracker. Applied Optics,
24(4), 527–537, doi:10.1364/ao.24.000527.

Daye, P. M., & Optican, L. M. (2014). Saccade
detection using a particle filter. Journal of Neuro-
science Methods, 235, 157–168, doi:10.1016/j.
jneumeth.2014.06.020.

Ditchburn, R. W., & Ginsborg, B. L. (1953). Involun-
tary eye movements during fixation. The Journal of
Physiology, 119(1), 1–17.

Earl, D. J., & Deem, M. W. (2005). Parallel tempering:
Theory, applications, and new perspectives. Phys-
ical Chemistry Chemical Physics, 7(23), 3910–3916.

Engbert, R. (2006). Microsaccades: A microcosm for
research on oculomotor control, attention, and
visual perception. Progress in Brain Research, 154,
177–192.

Engbert, R., & Kliegl, R. (2003). Microsaccades
uncover the orientation of covert attention. Vision
Research, 43(9), 1035–1045.

Engbert, R., & Mergenthaler, K. (2006). Microsaccades
are triggered by low retinal image slip. Proceedings
of the National Academy of Sciences, USA, 103(18),
7192–7197, doi:10.1073/pnas.0509557103.

Engbert, R., Mergenthaler, K., Sinn, P., & Pikovsky,
A. (2011). An integrated model of fixational eye
movements and microsaccades. Proceedings of the
National Academy of Sciences, USA, 108(39),
16149–16150, doi:10.1073/pnas.1102730108.

Hafed, Z. M., & Clark, J. J. (2002). Microsaccades as
an overt measure of covert attention shifts. Vision

Research, 42(22), 2533–2545, doi:10.1016/
s0042-6989(02)00263-8.

Hafed, Z. M., & Krauzlis, R. J. (2012). Similarity of
superior colliculus involvement in microsaccade
and saccade generation. Journal of Neurophysiol-
ogy, 107(7), 1904–1916, doi:10.1152/jn.01125.
2011.

Hafed, Z. M., Lovejoy, L. P., & Krauzlis, R. J. (2011).
Modulation of microsaccades in monkey during a
covert visual attention task. The Journal of
Neuroscience, 31(43), 15219–15230, doi:10.1523/
jneurosci.3106-11.2011.

Hermens, F. (2015). Dummy eye measurements of
microsaccades: Testing the influence of system
noise and head movements on microsaccade
detection in a popular video-based eye tracker.
Journal of Eye Movement Research, 8(1), http://dx.
doi.org/10.16910/jemr.8.1.1.

Holmqvist, K., Nyström, M., Andersson, R., Dew-
hurst, R., Jarodzka, H., & van de Weijer, J. (2011).
Eye tracking: A comprehensive guide to methods
and measures. Oxford, UK: Oxford University
Press.

Horowitz, T. S., Fine, E. M., Fencsik, D. E.,
Yurgenson, S., & Wolfe, J. M. (2007). Fixational
eye movements are not an index of covert attention.
Psychological Science, 18(4), 356–363.

Kalman, R. E. (1960). A new approach to linear
filtering and prediction problems. Journal of Basic
Engineering, 82(1), 35–45.

Kleiner, M., Brainard, D., Pelli, D., Ingling, A.,
Murray, R., & Broussard, C. (2007). What’s new in
Psychtoolbox-3. Perception, 36, ECVP Abstract
Supplement.

Ko, H., Poletti, M., & Rucci, M. (2010). Microsaccades
precisely relocate gaze in a high visual acuity task.
Nature Neuroscience, 13(12), 1549–1553, doi:10.
1038/nn.2663.

Lara, A. H., & Wallis, J. D. (2012). Capacity and
precision in an animal model of visual short-term
memory. Journal of Vision, 12(3):13, 1–12, doi:10.
1167/12.3.13. [PubMed] [Article]

Laubrock, J., Engbert, R., & Kliegl, R. (2005).
Microsaccade dynamics during covert attention.
Vision Research, 45(6), 721–730, doi:10.1016/j.
visres.2004.09.029.

Laubrock, J., Engbert, R., Rolfs, M., & Kliegl, R.
(2007). Microsaccades are an index of covert
attention: Commentary on Horowitz, Fine, Fenc-
sik, Yurgenson, and Wolfe (2007). Psychological
Science, 18(4), 364–366, doi:10.1111/j.1467-9280.
2007.01904.x.

Journal of Vision (2017) 17(1):13, 1–23 Mihali, van Opheusden, & Ma 17

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/935953/ on 09/12/2017

https://www.ncbi.nlm.nih.gov/pubmed/22728680
http://jov.arvojournals.org/article.aspx?articleid=2192348
https://www.ncbi.nlm.nih.gov/pubmed/19146321
http://jov.arvojournals.org/article.aspx?articleid=2193267
https://www.ncbi.nlm.nih.gov/pubmed/22419756
http://jov.arvojournals.org/article.aspx?articleid=2121083


Martinez-Conde, S., Macknik, S. L., Troncoso, X. G.,
& Dyar, T. A. (2006). Microsaccades counteract
visual fading during fixation. Neuron, 49(2), 297–
305, doi:10.1016/j.neuron.2005.11.033.

Metropolis, N., Rosenbluth, A., Rosenbluth, M.,
Teller, A., & Teller, E. (1953). Equation of state
calculations by fast computing machines. Journal of
Chemical Physics, 21, 1087–1092.

Newman, M. E. J., & Barkema, G. T. (1999). Monte
Carlo methods in statistical physics. Oxford, UK:
Clarendon Press.

Nyström, M., Hansen, D. W., Andersson, R., &
Hooge, I. (2016). Why have microsaccades become
larger? Investigating eye deformations and detec-
tion algorithms. Vision Research, 118, 17–24, doi:
10.1016/j.visres.2014.11.007.

Otero-Millan, J., Castro, J., Macknik, S. L., &
Martinez-Conde, S. (2014). Unsupervised cluster-
ing method to detect microsaccades. Journal of
Vision, 14(2):18, 1–17, doi:10.1167/14.2.18.
[PubMed] [Article]

Otero-Millan, J., Troncoso, X. G., Macknik, S. L.,
Serrano-Pedraza, I., & Martinez-Conde, S. (2008).
Saccades and microsaccades during visual fixation,
exploration, and search: Foundations for a com-
mon saccadic generator. Journal of Vision, 8(14):21,
1–18, doi:10.1167/8.14.21. [PubMed] [Article]

Pelli, D. G. (1997). The VideoToolbox software for
visual psychophysics: Transforming numbers into
movies. Spatial Vision, 10(4), 437–442, doi:10.1163/
156856897x00366.

Poletti, M., Aytekin, M., & Rucci, M. (2015). Head-eye
coordination at a microscopic scale. Current
Biology, 25(24), 3253–3259, doi:10.1016/j.cub.2015.
11.004.

Poletti, M., Listorti, C., & Rucci, M. (2013). Micro-
scopic eye movements compensate for nonhomo-
geneous vision within the fovea. Current Biology,
23(17), 1691–1695, doi:10.1016/j.cub.2013.07.007.

Poletti, M., & Rucci, M. (2016). A compact field guide
to the study of microsaccades: Challenges and
functions. Vision Research, 118, 83–97, doi:10.1016/
j.visres.2015.01.018.

Ratliff, F., & Riggs, L. A. (1950). Involuntary motions
of the eye during monocular fixation. Journal of
Experimental Psychology, 40(6), 687–701.

Rauch, H. E., Tung, F., & Striebel, C. T. (1965).
Maximum likelihood estimates of linear dynamic
systems. AIAA Journal, 3(8), 1445–1450.

Rolfs, M. (2009). Microsaccades: Small steps on a long
way. Vision Research, 49(20), 2415–2441, doi:10.
1016/j.visres.2009.08.010.

Rolfs, M., Engbert, R., & Kliegl, R. (2004). Micro-
saccade orientation supports attentional enhance-
ment opposite a peripheral cue: Commentary on
Tse, Sheinberg, and Logothetis (2003). Psycholog-
ical Science, 15(10), 705–707, doi:10.1111/j.
0956-7976.2004.00744.x.

Rucci, M., Iovin, R., Poletti, M., & Santini, F. (2007).
Miniature eye movements enhance fine spatial
detail. Nature, 447(7146), 852–855, doi:10.1038/
nature05866.

Salvucci, D. D., & Anderson, J. R. (1998). Tracing eye
movement protocols with cognitive process models.
In J. Editor (Ed.), Proceedings of the Twentieth
Annual Conference of the Cognitive Science Society
(pp. 923–928). Hillsdale, NJ: Lawrence Erlbaum
Associates.

Salvucci, D. D., & Goldberg, J. H. (2000). Identifying
fixations and saccades in eye-tracking protocols. In
Proceedings of the symposium on eye-tracking
research & applications (pp. 71–78). New York:
ACM.

Santini, T., Fuhl, W., Kubler, T., & Kasneci, E.
(2016). Bayesian identification of fixations, sac-
cades, and smooth pursuits. In J. Editor (Ed.),
Proceedings of the ninth biennial ACM Symposium
on Eye Tracking Research & Applications (pp.
NN–NN), doi:10.1145/285749/2857512. Location:
Publisher.

Skavenski, A., Hansen, R., Steinman, R., & Winterson,
B. (1979). Quality of retinal image stabilization
during small natural and artificial body rotations in
man. Vision Research, 19(6), 675–683, doi:10.1016/
0042-6989(79)90243-8.

Stacy, E. W. (1962). A generalization of the gamma
distribution. The Annals of Mathematical Statistics,
33(3), 1187–1192.

Stampe, D. M. (1993). Heuristic filtering and reliable
calibration methods for video-based pupil-tracking
systems. Behavior Research Methods, Instruments, &
Computers, 25(2), 137–142, doi:10.3758/bf03204486.

Terejanu, G. (2008). Crib sheet: Linear Kalman
smoothing [Online tutorial]. Retrieved from https://
cse.sc.edu/;terejanu/files/tutorialKS.pdf
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Appendix

Mathematical details of the BMD algorithm

Computation of the likelihood

We plug in the distributions from Equations 3, 5,
and 6 into the likelihood Equation 8:

pðxjCÞ ¼
RR
pðxjzÞpðzjC; vÞpðvjCÞdvdz

¼
RRY

t

Nðxt; zt;RxÞNðzt; zt�1 þ vt;RzÞ
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dvdz;

where Dzt ¼ zt � zt�1. We then expand the product
ðDzt 2 vtÞTðDzt 2 vtÞ and gather terms that depend on vt
into the second integral:
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dvdz: ð21Þ

The delta function will collapse the integral over the
time series v to the integral over the change points vsi ,
yielding Equation 9.

Kalman smoother

The goal of Step 2 in the approximate inference
algorithm is to maximize the integrand of the first term
of Equation 9:

e
� ðzt�zt�1ÞTðzt�zt�1Þ

2r2
z

�ðxt�ztÞ
Tðxt�ztÞ

2r2
x : ð22Þ

This integrand can be interpreted as the likelihood of
a stochastic process with update equations

zt ¼ zt�1 þ ft
xt ¼ zt þ nt;

where f and n represent independent Gaussian noise
with standard deviation rz and rx, respectively. These
equations represent a special case of the Kalman
update equations (Kalman, 1960; Welch & Bishop,
2006); therefore, the maximum-likelihood estimate of z
given x is a special case of a Kalman smoother. In a
Kalman filter, the goal would be to predict a future
state z based on the observations x so far. However,
since we have access to the entire time series, the correct
inference of z is given by a Kalman smoother. This can
be implemented using the RTS algorithm (Rauch et al.,
1965; Terejanu, 2008). In our case, this takes the form
of a Kalman filter forward in time, followed by another
Kalman filter backward in time. The forward Kalman
filter is:

Kt ¼
Pt�1 þ r2

z

Pt�1 þ r2
z þ r2

xbyt ¼ byt�1 þ Ktðxt � byt�1Þ
Pt ¼ ð1� KtÞðPt�1 þ r2

zÞ:

ð23Þ

In these equations, Pt is the variance of the posterior
over ŷt, and Kt is the Kalman gain. If Pt is large, we
expect large changes in the states, so we need to be able
to update the estimates with new incoming measure-
ments xt. Higher weighting of the incoming measure-
ments is achieved with increased Kalman gains.
However, if the measurement noise rx is high, the
observation xt is less reliable and the Kalman gain will
decrease accordingly, weighting the observation less
when estimating the state ŷt.

The variance of the posterior Pt does not depend on
the observations x, only on rz and rx, and on Pt�1
through a recurrence relation that follows from
Equation 23:

Pt ¼
ðPt�1 þ r2

zÞr2
x

Pt�1 þ r2
z þ r2

x

: ð24Þ

This recurrence relation defines Pt at each time point
given a choice for P0, the variance of the prior over the
first time point. The choice of P0 affects the variance Pt

at early times, but not for t� r2
x

r2
z
; because the

recurrence relation converges. At convergence,
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limt�‘Pt�1 ¼ limt�‘Pt ¼ P. Plugging this into the
forward-update equations yields the quadratic equation
P2 þ Pr2

z � r2
zr

2
x ¼ 0 with the valid solution

P ¼ �r2
z þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4
z þ 4r2

zr
2
x

p
2

: ð25Þ

We choose P0¼P, which implies Pt¼P for each time
point. Therefore, the Kalman gain Kt is also constant
across time. Plugging this Kalman gain into Equation
12 allows us to express the state estimation equation for
ŷt in terms of the previous estimate ŷt�1, current
observation xt, and process and noise standard
deviations:

byt ¼ byt�1 þ
r2
z þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4
z þ 4r2

zr
2
x

p
2r2
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4
z þ 4r2

zr
2
x

p ðxt � byt�1Þ:

ð26Þ
We denote R ¼ rx/rz and then get

byt ¼ byt�1 þ
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4R2
p

1þ 2R2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4R2
p ðxt � byt�1Þ: ð27Þ

Next we apply a second Kalman filter, backwards
in time, to the output of the first filter ŷ to yield the
estimated eye position ẑ (Rauch et al., 1965;
Terejanu, 2008). We initialize the eye position at the
end of the time series ẑT to be equal to ŷT and again
set the prior variance of ẑT equal to the asymptotic
limit P. This backwards filter has a different Kalman
gain than the first filter; the RTS update equations in
our case yield K ¼ P

Pþr2
z
: We can rewrite it, and thus

the update equation for eye position, Equation 13,
becomes

bzt ¼ byt þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4R2
p

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4R2
p

þ 1
ðbztþ1 � bytÞ: ð28Þ

From Equation 16 to Equation 17

Plugging Equation 4 into Equation 16, we get
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where I0 is the modified Bessel function of the first

kind of order zero. Next we change variables from r

to s ¼ r
r2
z
jjDzjj and write the final form of the integral

as

IðDz;Ds; d; rÞ ¼ 2
1�d

2

C dþ1
2

� �
rdþ1

r2
z

jjDzjj

� �dþ1

Figure A1. Details of solving the integral A(a, d)¼
R
f(s)ds, with fðsÞ ¼ sde�as2 I0ðsÞ. (A) logf(s) for several combinations of s, d, and a.

For larger values of a, f(s) is concentrated at lower values of s. For such values, we use the Taylor series expansion of I0 (s). However,

for smaller values of a, the larger values of s contribute substantially to the integral and therefore we use the large s approximation of

I0 (s). These analytical approximations are much faster than interpolation, though come at the cost of approximation errors. (B) We

limit the usage of approximations to ensure that the total approximation error of the integral A(a,d) is less than 0.003. In white and

gray, we show the parameter regions that satisfy this criterion.

Figure A2. MCMC steps. Visualization of the six types of steps

we use to navigate the space of the eye state time series C. We

ensure that we take samples from the posterior probability

distribution p(Cjx).
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This expression shows that we can calculate I(Dz, Ds,
d, r) by evaluating the integral

Aðd; aÞ ¼
Z ‘

0

sde�as2

I0ðsÞ ds;

and plugging in a ¼ r4
z

2jjDzjj2
1
r2 þ Ds

r2
z

� �
:

Unfortunately, this integral appears to have no
general analytic solution. However, in the limit of small
or large a, we can replace the Bessel function with

asymptotic approximations and solve the resulting
integrals. Specifically, we define upper and lower
bounds a‘(d) and a0(d). For a , a0(d), we use the large-
s approximation to the Bessel function (Abramowitz &
Stegun, 1965), I0ðsÞ’ esffiffiffiffiffi

2ps
p , so that

logAðd; aÞ’ log

Z ‘

0

sde�as2 esffiffiffiffiffiffiffi
2ps
p ds

¼ 1

4a
� dloga� dlog2: ð31Þ

When a . a‘(d), we approximate I0(s) by its Taylor

series around s ¼ 0 (Abramowitz & Stegun, 1965):

Figure A3. Parameter recovery in simulated data. In all simulated data sets, we fixed the velocity distribution parameters at d1¼ 4.4,

r0¼ 0.00038/ms, and r1¼ 0.038 /ms. For every combination of six motor-noise values and six measurement-noise values (colors), we

created eight data sets. Here we show the median across the eight data sets of the inferred parameter values as a function of the true

value of the same parameter—(A) motor noise, (B) measurement noise—or as a function of the true measurement noise rx, in the

case of the velocity distribution parameters (C) d1, (D) r0, and (E) r1. The dashed black lines correspond to perfect parameter

recovery. While these parameters are not always faithfully recovered, the inferred eye state time series C is recovered to a great

degree of accuracy (Figure 4).

Figure A4. Microsaccade kinematics in EyeLink data. (A) BMD: (left) peak velocity distributions, (middle) main-sequence linear

relationship between peak velocity and amplitude, and (right) duration distributions. (B) EK6. Mostly we notice similarities between

the kinematics of the sequences detected with the two different algorithms. We spot the velocity threshold for the peak velocity

distribution for the microsaccades detected by EK6.
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I0ðsÞ’R‘
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Cðiþ1Þ2
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2

� �2i
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i¼0
2�2i

Cðiþ1Þ2Z ‘

0
sdþ2ie�as2

ds: Keeping the first two terms and

evaluating the integrals, we obtain

logAðd; aÞ’ log2þ dþ 1

2
loga

þ log C
dþ 1

2

� �
þ

C 1þ dþ1
2

� �
4a

� �
: ð32Þ

We also build a lookup table with a million pairs of a
and d, and the corresponding value of logA(a, d), which
we compute numerically using MATLAB’s integral
command. For a0(s) , a , a‘(s), we evaluate logA(a, d)
by linearly interpolating between entries in the table.
Interpolation is a slow operation, so we replace I0(s)
with asymptotic approximations in the limit of small
and large a. This causes some error, which grows as a
deviates from 0 or ‘. We choose a‘(d) and a0(d) such
that the total error in logA(a, d) is less than 0.003
(Figure A1).

MCMC sampling

The goal of Step 3 in the BMD algorithm is to
sample possible eye state time series C from p(Cjẑ, r̂x,
r̂z, r̂0, r̂1, d̂1). We use an MCMC method (Newman &
Barkema, 1999), which performs a biased random walk
in the space of all such time series. On each step, we
generate a new time series Cnew by randomly mutating
the current C in one of six possible steps (Figure A2).
To concisely express these steps, we reparametrize each
time series C in terms of its change points s, and
separately keep track of time points where the eye state
changes from drift to microsaccade (s01) and from
microsaccade back to drift (s10). The six steps in our
MCMC sampling scheme are as follows:

1. s01 � s01 þ 1
2. s01 � s01 � 1
3. s10 � s10 þ 1
4. s10 � s10 � 1
5. Create a new pair s01 � s10
6. Create a new pair s10 � s01

Figure A5. Inferred microsaccade rates in EyeLink data vary across algorithms. Colors for the four algorithms are the same as in

previous figures. S1–S5 represent the five subjects.

Figure A6. Inferred microsaccade rate in EyeLink data is robust to prior parameters. (A) As we vary k0, the parameter that controls the

drift-duration prior, the inferred microsaccade rate varies only slightly. The lowest value, k0 ¼ 0.012 ms�1, corresponds to a drift-

duration distribution with median 80 ms, and the highest value, k0¼ 0.00133 ms�1, to 760 ms. (B) The inferred microsaccade rate

does not depend too much on k1 (with the exception of subject S4). The highest and lowest values of k1 correspond to median

microsaccade durations of 3.3 and 30.3 ms, respectively. The somewhat larger dependence of the microsaccade rate on k1 makes

intuitive sense, as increasing k1 allows for very short high-velocity sequences to be labeled as microsaccades.
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These steps dictate the selection probability
g(C � Cnew), which in general does not necessarily
equal g(Cnew � C). The MCMC algorithm accepts any
of these steps with an acceptance probability A(C �
C
new). To sample from the correct posterior distribu-

tion, the Markov chain in a Monte Carlo algorithm has
to satisfy detailed balance, which ensures that the
system makes transitions in and out of every state with
compatible probabilities:

PðC�CnewÞ
PðCnew�CÞ ¼

gðC�CnewÞAðC�CnewÞ
gðCnew�CÞAðCnew�CÞ

¼ pðCnewjbz; brx;brz;br0; br1; bd1Þ
pðCjbz; brx;brz;br0; br1; bd1Þ

: ð33Þ

We guarantee detailed balance using a modified
Metropolis–Hastings acceptance probability (Metrop-
olis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953;
Newman & Barkema, 1999):

AðC�CnewÞ

¼ min 1;
gðCnew�CÞpðCnewjbz; brx;brz;br0;br1; bd1Þ
gðC�CnewÞpðCjbz; brx;brz;br0;br1; bd1Þ

 !
:

ð34Þ
Coarsely, this rule accepts all steps which increase

the posterior probability of the new time series, and
accepts some steps which decrease its posterior.
However, the acceptance probability also contains a

term gðCnew�CÞ
gðC�CnewÞ which compensates for any mismatch in

selection probabilities between transitions and their
reverse. This compensation term allows the Metropo-

lis–Hastings to be flexible and ensures detailed balance
for any choice of steps.

Parallel tempering

We have a high-dimensional problem with a
complicated probability landscape that can be hard for
Metropolis algorithms to navigate without getting
stuck in local maxima. To avoid this, we performed
parallel tempering (Earl & Deem, 2005; Newman &
Barkema, 1999), also called replica-exchange MCMC
sampling, which entails performing the Metropolis–
Hastings algorithm concurrently at several inverse
temperatures b, which modify the acceptance proba-
bility to

AðC�CnewÞ ¼ minð1;
gðCnew�CÞpðCnewÞ
gðC�CnewÞpðCÞ

pðbzjCnew;brx; brz; br0; br1; bd1Þ
pðbzjC;brx; brz; br0;br1; bd1

 !bÞ; ð35Þ

where we have split up the posterior into a prior and a
likelihood. The lower the temperature (increased b), the
less likely the Markov chain will accept steps which
reduce the likelihood. Therefore, low-temperature
chains are strongly attracted by likelihood maxima
(local or global), whereas high-temperature chains
explore the space more widely. In the infinite-temper-
ature limit, the Markov chain samples from the prior
p(C). The strength of parallel tempering consists in
allowing neighboring chains to exchange information
by attempting to swap their configurations and
accepting swaps with a probability

Að C1;C2f g� C2;C1f gÞ

¼ min 1;
pðbzjC1; brx;brz;br0; br1; bd1Þ
pðbzjC2; brx;brz;br0; br1; bd1Þ

 !b2�b1

0@ 1A:
ð36Þ

This acceptance probability ensures that we always
swap if a hotter chain has stumbled on a state with a
higher posterior, thus providing the algorithm with a
very high chance to not get stuck in a local maxima,
while ensuring that the chain has b¼ 1 sample from the
correct posterior probability distribution p(Cjz, rz, r1,
d1, r0, d0). We choose the set of temperatures in our
simulation to span the full range between b¼ 0 and b¼
1, with significant overlap in the distribution of
posterior values between successive chains, so that
swaps are accepted with a nonzero probability.

Figure A7. Typical failure mode of BMD in low-noise simulations.

Instead of detecting the microsaccade labeled by EK6, BMD

detects a microsaccade right before and another microsaccade

right after. This error occurs because the Kalman smoother (Step

2) converts the discontinuities at the beginning and end of the

change points into more gradual slopes, and the subsequent

eye state estimation algorithm (Step 3) infers that these slopes

are low-velocity microsaccades. A truly optimal inference

algorithm, which marginalizes over the eye position, will not

make this error.
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